15 research outputs found

    MystifY : A Proactive Moving-Target Defense for a Resilient SDN Controller in Software Defined CPS

    Get PDF
    The recent devastating mission Cyber–Physical System (CPS) attacks, failures, and the desperate need to scale and to dynamically adapt to changes, revolutionized traditional CPS to what we name as Software Defined CPS (SD-CPS). SD-CPS embraces the concept of Software Defined (SD) everything where CPS infrastructure is more elastic, dynamically adaptable and online-programmable. However, in SD-CPS, the threat became more immanent, as the long-been physically-protected assets are now programmatically accessible to cyber attackers. In SD-CPSs, a network failure hinders the entire functionality of the system. In this paper, we present MystifY, a spatiotemporal runtime diversification for Moving-Target Defense (MTD) to secure the SD-CPS infrastructure. In this paper, we relied on Smart Grid networks as crucial SD-CPS application to evaluate our presented solution. MystifY’s MTD relies on a set of pillars to ensure the SDN controller resiliency against failures and attacks. The 1st pillar is a grid-aware algorithm that optimally allocates the most suitable controller–deployment location in large-scale grids. The 2nd pillar is a special diversifier that dynamically relocates the controller between heterogeneously configured hosts to avoid host-based attacks. The 3rd pillar is a temporal diversifier that dynamically detours controller–workload between multiple controllers to enhance their reliability and to detect and avoid controller intrusions. Our experimental results showed the efficiency and effectiveness of the presented approach

    Gold/QDs-Embedded-Ceria Nanoparticles: Optical Fluorescence Enhancement as a Quenching Sensor

    Get PDF
    This work focuses on improving the fluorescence intensity of cerium oxide (ceria) nanoparticles (NPs) through added plasmonic nanostructures. Ceria nanoparticles are fluorescent nanostructures which can emit visible fluorescence emissions under violet excitation. Here, we investigated different added plasmonic nanostructures, such as gold nanoparticles (Au NPs) and Cadmium sulfide/selenide quantum dots (CdS/CdSe QDs), to check the enhancement of fluorescence intensity emissions caused by ceria NPs. Different plasmonic resonances of both aforementioned nanostructures have been selected to develop optical coupling with both fluorescence excitation and emission wavelengths of ceria. In addition, different additions whether in-situ or post-synthesis have been investigated. We found that in-situ Au NPs of a 530 nm plasmonic resonance wavelength provides the highest fluorescence emissions of ceria NPs compared to other embedded plasmonic structures. In addition to the optical coupling between plasmonic resonance of Au with the visible emissions fluorescence spectrum of ceria nanoparticles, the 530 nm in-situ Au NPs were found to reduce the bandgap of ceria NPs. We suggest that the formation of more tri-valent cerium ions traps energy levels along with more associated oxygen vacancies, which is responsible for increasing the fluorescence visible emissions intensity caused by ceria. As an application, the gold-ceria NPs is shown to optically detect the varied concentration of iron tiny particles in aqueous medium based on a fluorescence quenching mechanism. This work is promising in different applications such as biomarkers, cancer treatments, and environmental pollution monitoring

    Plasmonic-Ceria Nanoparticles as Fluorescence Intensity and Lifetime Quenching Optical Sensor

    Get PDF
    Ceria nanoparticles have been recently used as an optical fluorescent material with visible emission under ultraviolet excitation, due to the formation of trivalent cerium ions with corresponding oxygen vacancies. This paper introduces the enhancement of both fluorescence emission and lifetime through adding gold nanoparticles. The reason is due to possible coupling between the plasmonic resonance of gold nanoparticles and the fluorescence emission of ceria that has been achieved, along with enhanced formation of trivalent cerium ions. Both factors lead to higher fluorescence intensity peaks and shorter fluorescence lifetimes. As an application, gold-ceria nanoparticles have been used as an optical sensing material for lead particles in aqueous media based on fluorescence quenching. Stern-Volmer constant of in-situ gold-ceria nanoparticles is found to be 2.424 M−1, with a relative intensity change of up to 40% at 0.2 g/L

    In-Situ Gold–Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor for Dissolved Oxygen

    Get PDF
    Cerium oxide (ceria) nanoparticles (NPs) have been proved to be an efficient optical fluorescent material through generating visible emission (~530 nm) under violet excitation. This feature allowed ceria NPs to be used as an optical sensor via the fluorescence quenching Technique. In this paper, the impact of in-situ embedded gold nanoparticles (Au NPs) inside ceria nanoparticles was studied. Then, gold–ceria NPs were used for sensing dissolved oxygen (DO) in aqueous media. It was observed that both fluorescence intensity and lifetime were changed due to increased concentration of DO. Added gold was found to enhance the sensitivity of ceria to DO quencher detection. This enhancement was due to optical coupling between the fluorescence emission spectrum of ceria with the surface plasmonic resonance of gold nanoparticles. In addition, gold caused the decrease of ceria nanoparticles’ bandgap, which indicates the formation of more oxygen vacancies inside the non-stoichiometric crystalline structure of ceria. The Stern–Volmer constant, which indicates the sensitivity of optical sensing material, of ceria–gold NPs with added DO was found to be 893.7 M−1, compared to 184.6 M−1 to in case of ceria nanoparticles only, which indicates a superior optical sensitivity to DO compared to other optical sensing materials used in the literature to detect DO. Moreover, the fluorescence lifetime was found to be changed according to the variation of added DO concentration. The optically-sensitivity-enhanced ceria nanoparticles due to embedded gold nanoparticles can be a promising sensing host for dissolved oxygen in a wide variety of applications including biomedicine and water quality monitoring

    Efficiency Improvement of Up-Conversion Process of Plasmonic-Enhanced Er-Doped-NaYF4 Nanoparticles Under IR Excitation

    Get PDF
    The up-conversion process is extensively studied because of its wide variety of applications such as bioimaging, energy harvesting, and optical sensors. However, the optical conversion efficiency is still relatively low and needs to be improved. Therefore, this paper introduces a detailed study of improving the up-conversion emission efficiency through adding plasmonic metallic nanostructures to the up-conversion optical centers. Our idea is to couple the optical plasmonic resonance with the visible emission of the optical centers under IR excitation. The optical centers are erbium ions hosted by fluoride low-phonon environment. Our calculations consider most possible transitions that can occur between the optical centers; tri-valent erbium ions, through Judd-Ofelt analysis. In addition, the effect of changing some parametric values is discussed, such as irradiance, and multi-phonon relaxations, to show their optimum values which correspond to best quantum yield efficiency. By increasing the diameter of added gold nanoparticles (Au NPs), the probability of occupation has been increased, and consequently, both the luminescence and up-conversion efficiency have been increased

    Enhanced erbium-doped ceria nanostructure coating to improve solar cell performance

    Get PDF
    This paper discusses the effect of adding reduced erbium-doped ceria nanoparticles (REDC NPs) as a coating on silicon solar cells. Reduced ceria nanoparticles doped with erbium have the advantages of both improving conductivity and optical conversion of solar cells. Oxygen vacancies in ceria nanoparticles reduce Ce4+ to Ce3+ which follow the rule of improving conductivity of solar cells through the hopping mechanism. The existence of Ce3+ helps in the down-conversion from 430 nm excitation to 530 nm emission. The erbium dopant forms energy levels inside the low-phonon ceria host to up-convert the 780 nm excitations into green and red emissions. When coating reduced erbium-doped ceria nanoparticles on the back side of a solar cell, a promising improvement in the solar cell efficiency has been observed from 15% to 16.5% due to the mutual impact of improved electric conductivity and multi-optical conversions. Finally, the impact of the added coater on the electric field distribution inside the solar cell has been studied

    Fluorescent nanocomposite of embedded ceria nanoparticles in crosslinked PVA electrospun nanofibers

    Get PDF
    This paper introduces a new fluorescent nanocomposite of electrospun biodegradable nanofibers embedded with optical nanoparticles. In detail, this work introduces the fluorescence properties of PVA nanofibers generated by the electrospinning technique with embedded cerium oxide (ceria) nanoparticles. Under near-ultra violet excitation, the synthesized nanocomposite generates a visible fluorescent emission at 520 nm, varying its intensity peak according to the concentration of in situ embedded ceria nanoparticles. This is due to the fact that the embedded ceria nanoparticles have optical tri-valiant cerium ions, associated with formed oxygen vacancies, with a direct allowed bandgap around 3.5 eV. In addition, the impact of chemical crosslinking of the PVA on the fluorescence emission is studied in both cases of adding ceria nanoparticles in situ or of a post-synthesis addition via a spin-coating mechanism. Other optical and structural characteristics such as absorbance dispersion, direct bandgap, FTIR spectroscopy, and SEM analysis are presented. The synthesized optical nanocomposite could be helpful in different applications such as environmental monitoring and bioimaging

    Fluorescence intensity and lifetime quenching of ceria nanoparticles as optical sensor for tiny metallic particles

    Get PDF
    Ceria nanoparticles are studied as optical probe for different types of tiny metallic particles using fluorescence quenching technique. The synthesized ceria nanoparticles are characterized by having formed charged oxygen vacancies, which can be considered as the main receptors for the used tiny metallic particles to be sensed or absorbed. Under near-UV excitation, the visible fluorescent emission intensity is found to be reduced with increasing the concentration of the studied tiny metallic particles in an aqueous solution. To emphasize the optical sensing process, ceria nanoparticles fluorescence lifetime measurements were demonstrated before and after adding the tiny metallic particles. In addition, Stern– Volmer constants, which are considered as an indication for the sensitivity to quenchers, have been calculated for the used ceria nanoparticles and found to be 1.645, and 0.768 M-1 for both lead and iron sensing, respectively. This work could be further helpful as sensitive optical sensors in both biomedical and environmental application

    Lanthanide-Doped Ceria Nanoparticles as Backside Coaters to Improve Silicon Solar Cell Efficiency

    Get PDF
    This paper introduces lanthanide-doped ceria nanoparticles as silicon solar cell back-side coaters, showing their influence on the solar cell efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce4+ state ions to the Ce3+ ones. These O-vacancies follow the rule of improving silicon solar cell conductivity through a hopping mechanism. Besides, under near-ultra violet (near-UV) excitation, the reduced trivalent cerium Ce3+ ions are directly responsible for down converting the un-absorbed UV wavelengths to a resultant green photo-luminescence emission at ~520 nm, which is absorbed through the silicon solar cell’s active layer. Adding lanthanide elements such as Neodymium “Nd” as ceria nanoparticle dopants helps in forming extra oxygen vacancies (O-vacancies), followed by an increase in the number of Ce4+to Ce3+ ion reductions, thus enhancing the conductivity and photoluminescence down conversion mechanisms. After introducing lanthanide-doped ceria nanoparticles on a silicon solar cell surface, a promising enhancement in the behavior of the solar cell current-voltage curve is observed, and the efficiency is improved by about 25% of its initial value due to the mutual impact of improving both electric conductivity and optical conversions

    Fluorescent Nanocomposite of Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers

    No full text
    This paper introduces a new fluorescent nanocomposite of electrospun biodegradable nanofibers embedded with optical nanoparticles. In detail, this work introduces the fluorescence properties of PVA nanofibers generated by the electrospinning technique with embedded cerium oxide (ceria) nanoparticles. Under near-ultra violet excitation, the synthesized nanocomposite generates a visible fluorescent emission at 520 nm, varying its intensity peak according to the concentration of in situ embedded ceria nanoparticles. This is due to the fact that the embedded ceria nanoparticles have optical tri-valiant cerium ions, associated with formed oxygen vacancies, with a direct allowed bandgap around 3.5 eV. In addition, the impact of chemical crosslinking of the PVA on the fluorescence emission is studied in both cases of adding ceria nanoparticles in situ or of a post-synthesis addition via a spin-coating mechanism. Other optical and structural characteristics such as absorbance dispersion, direct bandgap, FTIR spectroscopy, and SEM analysis are presented. The synthesized optical nanocomposite could be helpful in different applications such as environmental monitoring and bioimaging
    corecore